遺傳學中,基因重組(英語:genetic recombination/reshuffling)亦稱遗传重組,是指DNA片段斷裂並且轉移位置的过程,会导致基因间或基因内新的连锁关系形成。对于真核生物,减数分裂過程中的基因重組能夠形成一套新的遺傳信息,並從親本遺傳給子代。多数基因重组是自然发生的,可以分为两种类型:(1)染色体间重组,通过位点在不同染色体上的等位基因的自由组合发生(减数分裂I中同源染色體的非姐妹染色单体上的基因自由组合);(2)染色体内重组,通过交换发生。[1]
减数分裂重组模型,由双链断裂或缺口开始,然后与同源染色体配对、链侵入,开始重组修复过程。间隙的修复可能导致侧翼区域的交叉(CO)或非交叉(NCO)。CO的重组被认为是通过双霍利迪结(DHJ)模型发生的,如上图右边所示。NCO重组被认为主要是通过合成依赖链退火(SDSA)模型发生的,如上图左所示。大多数重组事件似乎是SDSA类型。
在真核生物减数分裂过程中,遗传重组时同源染色體会配对。随后可能会发生染色体间的遗传信息传递。信息传递可以不需要物理交换(遗传物质的一部分从一条染色体复制到另一条染色体,而来源的染色体并未改变,见图中SDSA路径),也可以通过DNA链断裂并重新连接,形成新的DNA分子(见图中DHJ路径)。
重组也可能在真核生物有絲分裂时发生,它通常涉及染色体复制后形成的两个姐妹染色体。在这种情况下,由于姐妹染色体通常是相同的,所以不会产生新的等位基因组合。在减数分裂和有丝分裂中,DNA的相似分子(同源序列)之间发生重组。减数分裂过程中,非姐妹同源染色体相互配对,使非姐妹同源染色体之间发生典型的重组。在减数分裂和有丝分裂细胞中,同源染色体之间的重组是DNA修復中常见的机制。无性生殖的细菌和古菌也会发生基因重组和重组DNA修復。
對原核生物(例如細菌)來說,個體之間可以通過交接,或是經由病毒(例如噬菌體)的傳送,來交換彼此的基因,並且利用基因重組,將這些基因組合到本身原有的遺傳物質中。
對於較複雜的生物來說,重組通常是因為同源染色體配對時發生互換,使得同源染色體上的基因在遺傳到子代時,經常有不完全的連鎖。由於重組現象的存在,科學家可以利用重組率來定出基因之間的相對位置,描繪出基因圖譜。
使同源序列相同的基因轉換过程也属于基因重组。
重组可以在实验室(体外)环境中人工诱导发生,产生重組DNA,用于疫苗开发等目的。
目录
1 聯會
2 机制
3 染色體互換
4 基因轉換
5 非同源重组
6 B细胞
7 基因工程
8 重组修复
9 减数分裂重组
10 RNA病毒重组
11 重组在生命起源中的作用
12 參見
13 參考文獻
14 外部連結